
Data in Brief 31 (2020) 105984

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Salzburg Database of Polygonal Data: Polygons

and Their Generators

Günther Eder, Martin Held

∗, Stein þór Jasonarson, Philipp Mayer,
Peter Palfrader

Universität Salzburg, FB Computerwissenschaften, Salzburg, Austria

a r t i c l e i n f o

Article history:

Received 4 June 2020

Accepted 30 June 2020

Available online 8 July 2020

Keywords:

Polygons

Generators

Database

Pseudo-random

Monotone

Star-shaped

a b s t r a c t

The Salzburg Database is a repository of polygonal areas of

various classes and sizes, with and without holes. Positive

weights are assigned to all edges of all polygons. We intro-

duce this collection and describe the generators that pro-

duced its polygons. The source codes for all generators as

well as the polygons generated are publicly available.

© 2020 The Author(s). Published by Elsevier Inc.

This is an open access article under the CC BY license.

(http://creativecommons.org/licenses/by/4.0/)
Specifications table

Subject Computer Graphics and Computer-Aided Design

Specific subject area The Salzburg Database is a repository of polygonal areas of various classes and

sizes, with and without holes. Positive weights are assigned to all edges of all

polygons.

Type of data Text files and C/C++ codes used to generate the data.

How data were acquired All polygonal data was generated by our codes at the University of Salzburg,

Salzburg, Austria.

Data format Raw data in GraphML [1] format (for the polygons) and C/C++ codes (for the

generators).

Parameters for data collection Sample data is described; the full set of thousands of polygons is available in

the repository.
∗ Corresponding author.

E-mail addresses: geder@cs.sbg.ac.at (G. Eder), held@cs.sbg.ac.at (M. Held), sjas@cs.sbg.ac.at (S. Jasonarson),

pmayer@cs.sbg.ac.at (P. Mayer), palfrader@cs.sbg.ac.at (P. Palfrader).

https://doi.org/10.1016/j.dib.2020.105984

2352-3409/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license.

(http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.dib.2020.105984
http://www.ScienceDirect.com
http://www.elsevier.com/locate/dib
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dib.2020.105984&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:geder@cs.sbg.ac.at
mailto:held@cs.sbg.ac.at
mailto:sjas@cs.sbg.ac.at
mailto:pmayer@cs.sbg.ac.at
mailto:palfrader@cs.sbg.ac.at
https://doi.org/10.1016/j.dib.2020.105984
http://creativecommons.org/licenses/by/4.0/

2 G. Eder, M. Held and S. Jasonarson et al. / Data in Brief 31 (2020) 105984

V

1

a

a

o

b

e

H

t

s

h

P

a

S

Description of data collection Our C/C++ codes were used to generate the data; all codes are available in the

repository.

Data source location All data was generated at the University of Salzburg, Salzburg, Austria.

Data accessibility Data is stored in two repositories. Repository name for polygonal data:

Salzburg Database of Geometric Inputs. Direct URL to data:. See also

https://sbgdb.cs.sbg.ac.at . Repository name for the codes: Computational

Geometry and Applications Laboratory. Direct URL to the codes:

https://github.com/cgalab .

alue of the data

• An important part of software development is testing the correctness and evaluating the per-

formance of an algorithm’s implementation. Ideally, one would run one’s code on data of

practical relevance. However, when working on implementations of geometric algorithms it

often is next to impossible to obtain enough practically relevant inputs. Then the second-best

choice is to run an algorithm for a reasonably large number of “random” inputs. Subjecting

the code to inputs of different characteristics is important since this may help to trigger dif-

ferent execution paths. Similarly, a large range of input sizes is needed to obtain insights in

the actual runtime and memory consumption.

• Researchers and developers working on implementations of geometric algorithms in both

academia and industry will benefit from this data if they need polygons to test their codes.

• The availability of this data permits future experimental studies (such as performance evalu-

ations) that require a large number of polygonal datasets.

• Random polygons are used in various other fields outside of computer science.

• Users of our polygonal data can easily generate additional data of their own because we

provide the source codes of all our generators.

. Data Description

The Salzburg Database provides a repository of polygonal data. It contains simply-connected

nd multiply-connected polygonal areas in two dimensions. Every polygon has positive weights

ssigned to its edges. These weights can be used to test codes that operate on weighted polyg-

nal input, such as for computing weighted straight skeletons. Of course, these weights can also

e regarded as weights assigned to the vertices of the polygon, by, e.g., taking the weight of an

dge as the weight of its start vertex.

We use GraphML [1] as file format for our polygonal data. This file format is extensible.

ence, we could also add explicit vertex-weights and other information such as edge or ver-

ex colorings in the future.

Our database can be used freely and is provided via direct download from https://sbgdb.cs.

bg.ac.at or git in combination with git-annex. (See https://git-annex.branchable.com/ .) It is also

osted on Zenodo, https://zenodo.org/ . See doi: 10.5281/zenodo.3784788 for a persistent link.

erhaps even more important is the fact that the source codes for all generators used to gener-

te our polygonal data are available on GitHub and can be used freely under the GPL(v3) license :

ee https://github.com/cgalab .

https://sbgdb.cs.sbg.ac.at
https://github.com/cgalab
https://sbgdb.cs.sbg.ac.at
https://git-annex.branchable.com/
https://zenodo.org/
https://doi.org/10.5281/zenodo.3784788
https://www.gnu.org/licenses/gpl-3.0.html
https://github.com/cgalab

G. Eder, M. Held and S. Jasonarson et al. / Data in Brief 31 (2020) 105984 3

Fig. 1. (a) Triangulation of the start polygon and its domain; (b) Translation of vertex v ; (c) The polygon after the

translation of v .

2. Experimental Design, Materials and Methods

2.1. Triangulation Perturbation

Our implementation Fpg is motivated by an approach originally proposed by O’Rourke and

Virmani [2] : They start with a regular polygon P and then translate its vertices while maintain-

ing the polygon’s simplicity. A direction and speed are chosen at random and assigned to each

vertex of P . Then the vertices of P are processed consecutively. A single vertex is moved one

“time unit” as long as P remains simple, otherwise that move is omitted and a new random

velocity is chosen for the next round. O’Rourke and Virmani [2] suggest to use several hundred

translations per vertex.

As vertices can also move in an outward direction, a domain is defined which has to

contain P . We use a large rectangle to limit the outward movement of the vertices.

Maintaining the simplicity of P during the vertex translations can be an expensive task if

carried out naïvely. We utilize a triangulation of the interior and the exterior of P to simplify

intersection tests while moving a polygon vertex; cf. Fig. 1 a. Let v denote a boundary vertex

of P that we want to translate and let e l and e r denote its two incident edges. In practice, a

randomly chosen translation vector
−→

t tends to violate the simplicity of P, with high probability,

which leads to a bad performance. Therefore, we choose a random direction for
−→

t first. Then

the length of
−→

t is generated from a normal distribution using parameters suitable to the local

environment around v , in the chosen direction. Experiments show that such an approach for

choosing translation vectors produces only few invalid translations.

After translating v by
−→

t , we obtain v ′ and the edges e ′
l

and e ′ r , respectively. Our intersection

test involves checking all triangles pierced by e ′
l

or e ′ r . If all triangle edges intersected by e ′
l

and

e ′ r are interior or exterior diagonals then we change v into v ′ in P . Additionally, we may have

to modify the triangulation by checking the triangles intersected by the modified edges as well

as the triangles incident at v . If we cross a polygon edge then we reject
−→

t as translation vector

and restart the process. See Figure for an illustration of this process.

Fpg starts from a regular polygon where a triangulation, in- and outside, is trivially obtained.

To speed up the generation of large polygons, instead of starting with a large regular polygon,

Fpg can start with a smaller one, and then “grow” this polygon by repeatedly splitting random

edges. The additional vertex introduced by the split is then translated to avoid collinearities.

If we pick edges uniformly at random then we see clusters of many short edges and a few

very long edges. Presumably this is due to the fact that areas with short edges are more likely

to get extra vertices than areas of the same size which contain (fewer) long edges; cf. Fig. 2 . To

avoid this clustering, we pick edges randomly weighted by their length.

Furthermore, Fpg is capable of generating polygons with holes. Since P is regular at the be-

ginning, we can trivially place regular holes inside P as well. The process described above works

also for this setting, as the intersection tests hinge on the triangulation. In Fig. 3 we illustrate

4 G. Eder, M. Held and S. Jasonarson et al. / Data in Brief 31 (2020) 105984

Fig. 2. Polygon exhibiting clustering due to the selection of edges uniformly at random in the subdivision step.

Fig. 3. Polygons generated by Fpg after 1, 8, 50, and 500 iterations without edge-subdivision.

Fig. 4. Left-to-right: A polygon and a polygon with holes computed by Fpg , and a polygon generated by Spg . All polygons

have of 40 vertices.

t

f

e

2

a

b

p

e

he evolution of a polygon computed by Fpg . The polygon has 10 vertices, with a triangular hole

ormed by three additional vertices. The first two images in Fig. 4 are the result of Fpg using

dge-subdivision; the second image depicts a polygon with holes.

.2. Combining Line Sweep and 2-Opt Moves

Our generator Spg constructs a simple polygon P on a given point set S in the plane. (Such

 point set can be generated randomly or specified by a user.) Initially, Spg creates a polygon

y choosing a random permutation of the input vertices. This initial polygon contains, with high

robability, self-intersections. Therefore, a line sweep is applied to identify intersecting pairs of

dges, followed by local modifications which remove these intersections.

G. Eder, M. Held and S. Jasonarson et al. / Data in Brief 31 (2020) 105984 5

(

(

(

To identify pairs of edges that intersect we use the classic Bentley-Ottmann algorithm [3] .

We sweep from left to right, thereby maintaining a sorted set of edges that intersect the sweep-

line. The input vertices comprise the event points of the line sweep. During the sweep, at vertex

v i , we have to modify the sweep-line status by removing and/or adding the edges incident at v i .
Additionally, at every event point, we have to verify that any newly added edge is not intersect-

ing its neighbors in the status. In case a pair of edges does intersect, we have to resolve that

intersection before we carry on with the sweep.

We resolve intersections by applying so-called 2-opt moves. A 2-opt move replaces the edges

e 1 = v 1 v 2 and e 2 = v 3 v 4 by the edges e ′ 1 = v 1 v 3 , e ′ 2 = v 2 v 4 . (Note that the polygon boundary be-

comes disconnected if the 2-opt move connects the wrong vertex pairs.) As we apply 2-opt

moves during the line sweep to resolve intersections, we may introduce new intersections. How-

ever, a key property of the 2-opt move is that it decreases the length of the polygon (if not all

points are collinear). This guarantees that we will eventually arrive at a polygon that is simple if

we apply 2-opt moves repeatedly to resolve intersections. A result by van Leeuwen and Schoone

[4] tells us that we need at most O(n 3) 2-opt moves.

We implemented and tested three variants of the line sweep. They differ mainly in how they

proceed after finding and resolving an intersection:

a) After a 2-opt move is carried out, we simply continue with the line sweep. After arriving

at the right-most vertex we restart the line sweep at the left-most vertex. The sweep is

repeated until all intersections are resolved.

b) After a 2-opt move, we test and resolve all intersections at the current sweep-line position,

before carrying on. Again, at the right-most vertex we restart until all intersections are re-

solved.

c) After a 2-opt move, we reverse the sweep direction to deal with possibly new edge intersec-

tions. We resume our rightwards sweep at the left-most vertex affected by the 2-opt move.

The last image in Fig. 4 was generated by Spg on a point set of 40 vertices using variant (a).

Note that collinear edges need special care because a 2-opt move will not always result in a

shortening of the perimeter of the polygon. If intersecting collinear edges are detected then we

remove these edges and sort the respective collinear vertices. Then we connect the vertices by

edges in consecutive order, i.e., form a chain of non-overlapping collinear edges. This guarantees

that the perimeter of the polygon decreases also in the case of collinear vertices.

2.3. SRPG

Srpg generates simply-connected and multiply-connected polygonal areas by means of a reg-

ular grid that consists of square cells. Given two integer values, a and b , Srpg generates a grid

of size a times b . By default Srpg then generates orthogonal polygons on this grid. An addi-

tional parameter p , between zero and one, leads to a smaller or larger number of vertices in the

produced polygon. Srpg is able to produce octagonal polygons by cutting off corners with ±45 ◦

diagonals during the construction. Cutting corners repeatedly, without the diagonal restriction,

yields an approximation of a smooth free-form curve. Additionally, Srpg can apply perturbations

in order to generate polygons with axes-parallel edges whose vertices do not lie on a grid, or

to generate polygons whose edges (in general) are not parallel to the coordinate axes. See Fig. 5

for some sample polygons.

2.4. RPG

Auer and Held [5] first described Rpg more than twenty years ago. Rpg supports various

heuristics to generate “random” polygons for a given set of vertices. In particular, it is able to

6 G. Eder, M. Held and S. Jasonarson et al. / Data in Brief 31 (2020) 105984

Fig. 5. Samples of a random, an orthogonal, an octagonal, and a smoothed polygon generated by Srpg , as well as a

random and a grid-aligned orthogonal polygon with holes.

Fig. 6. In left-to-right order, an x -monotone, a star-shaped, and a simple polygon computed by Rpg on the same set of

30 vertices.

G. Eder, M. Held and S. Jasonarson et al. / Data in Brief 31 (2020) 105984 7

Fig. 7. The curves of Koch, Sierpinski, Hilbert, and Lebesgue, in reading order. Each figure is partitioned into four quad-

rants with portions of the curve shown at different orders.

produce star-shaped polygons uniformly at random. Furthermore, it generates x -monotone poly-

gons uniformly at random, based on the algorithm by Zhu et al. [6] . We have resurrected this

code and updated it to compile on modern platforms, thus meeting requests voiced by several

colleagues. A recent extension of Rpg also supports the generation of polygons with holes. See

Fig. 6 for examples of some polygons generated by Rpg .

2.5. Additional Generators

Our repository also contains codes to produce well-known polygons such as the Koch

snowflake (also in a nested variant), the Sierpinski curve, and closed variants of the Hilbert and

Lebesgue curves; see Fig. 7 .

8 G. Eder, M. Held and S. Jasonarson et al. / Data in Brief 31 (2020) 105984

D

t

A

S

1

R

[

[

[

[

[

[
eclaration of Competing Interest

The authors declare that they have no known competing financial interests or personal rela-

ionships which have, or could be perceived to have, influenced the work reported in this article.

cknowledgments

Work supported by Austrian Science Fund (FWF): Grants ORD 53-VO and P31013-N31.

upplementary material

Supplementary material associated with this article can be found, in the online version, at

0.1016/j.dib.2020.105984 .

eferences

1] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, M.S. Marshall, GraphML Progress Report Structural Layer Pro-

posal, in: Proceedings of the 9th International Symposium on Graph Drawing, 2001, pp. 501–512. http://graphml.
graphdrawing.org/ .

2] J. O’Rourke , M. Virmani , Generating Random Polygons, Technical Report, Smith College, Northampton, MA 01063,
USA, 1991 .

3] J.L. Bentley, T.A. Ottmann, Algorithms for Reporting and Counting Geometric Intersections, IEEE Transactions on Com-
puters 28 (9) (1979) 643–647, doi: 10.1109/TC.1979.1675432 .

4] J. van Leeuwen , A .A . Schoone , Untangling a Travelling Salesman Tour in the Plane, in: J. Mühlbacher (Ed.), Proc. 7th

Conference Graph-theoretic Concepts in Computer Science (WG’81), 1982, pp. 87–98 .
5] T. Auer , M. Held , Heuristics for the Generation of Random Polygons, in: Proceedings of the 8th Canadian Conference

on Computational Geometry (CCCG), 1996, pp. 38–44 .
6] C. Zhu , G. Sundaram , J. Snoeyink , J. Mitchell , Generating Random Polygons with Given Vertices, Computational Ge-

ometry: Theory and Applications 6 (5) (1996) 277–290 .

https://doi.org/10.1016/j.dib.2020.105984
http://graphml.graphdrawing.org/
http://refhub.elsevier.com/S2352-3409(20)30878-7/sbref0002
http://refhub.elsevier.com/S2352-3409(20)30878-7/sbref0002
http://refhub.elsevier.com/S2352-3409(20)30878-7/sbref0002
https://doi.org/10.1109/TC.1979.1675432
http://refhub.elsevier.com/S2352-3409(20)30878-7/sbref0004
http://refhub.elsevier.com/S2352-3409(20)30878-7/sbref0004
http://refhub.elsevier.com/S2352-3409(20)30878-7/sbref0004
http://refhub.elsevier.com/S2352-3409(20)30878-7/sbref0005
http://refhub.elsevier.com/S2352-3409(20)30878-7/sbref0005
http://refhub.elsevier.com/S2352-3409(20)30878-7/sbref0005
http://refhub.elsevier.com/S2352-3409(20)30878-7/sbref0006
http://refhub.elsevier.com/S2352-3409(20)30878-7/sbref0006
http://refhub.elsevier.com/S2352-3409(20)30878-7/sbref0006
http://refhub.elsevier.com/S2352-3409(20)30878-7/sbref0006
http://refhub.elsevier.com/S2352-3409(20)30878-7/sbref0006

	Salzburg Database of Polygonal Data: Polygons and Their Generators
	 Specifications table
	Value of the data
	1 Data Description
	2 Experimental Design, Materials and Methods
	2.1 Triangulation Perturbation
	2.2 Combining Line Sweep and 2-Opt Moves
	2.3 SRPG
	2.4 RPG
	2.5 Additional Generators

	Declaration of Competing Interest
	Acknowledgments
	Supplementary material
	References

